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Effect of colored noises on spatiotemporal chaos in the complex Ginzburg-Landau equation
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The effect of colored noises, which are correlated both in space and time, on spatiotemporal chaos in the
complex Ginzburg-Landau equation has been studied numerically. The correlations of spatiotemporal patterns
as a function of characteristics of noise were calculated. We found that there exists an optimal correlation
length of noise where the system establishes its maximal spatial correlation; a small temporal correlation of
noise corresponds to a larger correlation length in the system; and that an increase of noise intensity enhances
the spatial correlation of the spatiotemporal patterns. Besides, the frequency of temporal correlation function,
which is a complicated oscillation, also depends on properties of the noise.
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The nontrivial role played by noise in dynamic systems We fix the deterministic dynamics of complex Ginzburg-
has been recognized for over two decafle@]. Due to its  Landau equation in the regime of chaos, and change the
theoretical importance and potential practical application, iforoperty of colored noise. The response of the system to the
has attracted great interest of theoretical and experimentalbise is then simulated. Spatial and temporal correlation
researches. Earlier investigations along this line were mainlyynctions are used to characterize the system. We show that
concentrated on low-dimensional systems with purely temthe noise significantly affects the correlation properties of the
poral dependence. Important effects have been discovered.dfstem. The spatial correlation length and oscillation fre-
was found that noise can change the instability of determing,ency of the temporal correlation function depend remark-
istic states, and induce new states that are completely abs ly on the character of noise. We find that there exists an

in the noise-free systems. As a usual source of disorder, §f inal correlation length of the noise where the system

can counterintuitively produce order. Under appropriate CIMachieves its maximum spatial correlation. The correlation

cumstances, the usual nuisance can become a boon as f) . . .
) - tﬁﬁe and the intensity of the noise are also found to have
been seen in the well-known case of stochastic resori@hce . ~.. . y

significant influence.

As the influence of noises on low-dimensional dynamic - . .
systems has been studied extensijély much research in- . The complex Glnzburg-Landau equati¢BGLE) s an
pi@portant model for spatially extended chaos. It is simple,

terest has nowadays shifted to spatially extended systentg'POr! .

[4,5], a situation that is apparently much more complicated@XPerimentally relevant, universp29], and has been a ge-
In this case, the noise can correlate in both space and tinfé€ric amplitude equation widely used in the study of pattern
[6], and the influence is even more profound. Importanformation. We consider the CGLE of the form
manifestations include noise-induced frof@ and spatial IA

patterns[8,9], noise-induced phase transitioricluding — =A+(1+icy)V2A—(1—icy)|Al%A, (1)
noise-induced ordering transitions and noise-induced disor- ot

dering transitions[10—14], noise-induced phase separation

[15], spatiotemporal stochastic resonaft®&—20, and vari- . 3 .
ous noise-sustained phenomd@a—24. In the spatially ex- numbers. The equation supports fruitful spatiotemporal phe-
gomena, and chaos appears as one of its fundamental solu-

tended situations, the way in which the noise takes effect i A basi £ ch in the CGLE is the Beniami
not obvious, and the deterministic description usually canno ons. A basic source of chaos In the IS the Benjamin-
eir instability, which is an interplay between spatial and

give the right results. It is assumed that the noise-induce | di . - dixandc. b
phenomena have come about as a consequence of nonIinéﬁmgo:]a B|sp_er5|_onl.: or our purp_oie, We dixan CSh e
interaction between the noise and the deterministic dynam/©Nd the Benjamin-Feir curvec(c;=1) to ensure a chaotic

ics. dynamics. The colored noise we considered has been gener-

In this paper, we are concerned with the interplay betvveefi‘ted from the following stochastic partial differential equa-

where amplitudeA is complex, andcq,c5 are real positive

colored noises and spatiotemporal chaos in the complefion [30:
Ginzburg-Landau equation. It is well known that noise and an(r.t) 1 1
chaos represent, respectively, two kinds of essentially differ- &t, =— ;(1—)\2V2) 7t —E(0). 2

ent irregularities. The former is induced by genuine stochas-
tic sources, Wh'l.e '.{he rgn_domness .Of the latter IS pseudo ang(r,t) is a Gaussian distributed white noise that has property
is deterministic in its origin. The noises we consider are col-
ored, i.e., correlated both spatially and temporally. The spa- (E(r,0&(r' t"))=2e8(t—t")8(r—r"), (3)
tiotemporal chaos is intrinsically irregular in both space and

time, and represents a prototype of deterministic randomwheree is the intensity of the noisex in Eq. (2) measures
ness. It is interesting to see what would come about as the correlation length of(r,t), and the temporal memory of
result of the interaction between these two irregularities thathe stochastic process is controlled hyThe spatial correla-

are essentially distinct. tion of order\ is ensured by the Laplacian term that couples
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the stochastic field at different points. Obviously, E3).is a
generalization of the evolution equation for Ornstein-
Uhlenbeck process. The noises determined by (2p.are
exponentially correlated both in space and time. The noise
generated in this way represents a simple spatiotemporal
structured noise that can be used to mimic real situations.
Equation(2) is a linear stochastic partial differential equa-
tion. By applying the algorithm developed in R¢BO], we
simulate exactly the noise in Fourier space and perform a
reverse-Fourier transform back to the real space. In this way
we obtain the final noise we need. The colored noise gov-
erned by Eq(2) has been introduced additively into E4),

and we concentrate our attention on the noise-affected CGLE
of the following form:

A _ _ .
E=A+(1+|c1)V2A—(1—|c3)|A|2A+(1+|)77(r,t).
4

In order to examine the influence of added noise and its
interaction with the spatiotemporal chaos, E4) is inte-
grated numerically. We discreted E4) on a 512512
square lattice with a zero-flux boundary condition and inte-
grated it numerically by Euler algorithm. In all our calcula-
tions, the parametec,,c; was fixed to be 0.9 and 1.25,
respectively. The dynamics of the noise-free CGLE is thus
located in the chaotic regime.

A snapshot of the spatiotemporal chaos is depicted in Fig.
1(a), which is a gray-scaled picture of the real part of the
complex amplitude. In order to characterize the system, we
introduce the following spatial correlation function:

_ ’ ' ’ FIG. 1. Snapshot of spatiotemporal chday before and after
= + .
Cs(r) <j RE(A(T)JREA(r " +1))dr > ® the noise is turned otb). Parametersc;=0.9, c;=1.25; r=1.0,

A=16.0,£=0.001.
It is defined in the field of the real part of the amplitude and
measures the spatial correlation property of points apart frons.25. At this point, the colored noise has a correlation
distancer. The averagé) is performed over the time. The length of 5.06 §=16). It is interesting that the interplay
integration is carried out numerically over the lattice in abetween the noise and extended chaos with short spatial cor-
long period of time so that the observed patterns argelations was able to establish a much longer spatial correla-
asymptotic. Figure 2open circley shows theC for the  tion within the system. The typical pattern shown in Fih)1
noise-free pattern in Fig.(d). It is roughly an exponential s not static. It evolves continuously with time.
decay. The solid line over the circles is a least-square fit of

exponential functiore™"/'. The distance wher€(r) decays 1.2 r————————

to its e~ thus measures the correlation lengttwhich is -

5.25 for the present case. 09} & .
The behavior of the system undergoes a drastic change o

when the noise is turned on. Figurébl shows a typical 06l % J

snapshot of the real part of the amplitude after transient pro- ~ ] 4

cess has died out. Large clusters can be recognized in the 03l J

demonstration. The details of the spatiotemporal cli&as I

1(a)] are smeared out by noises, and small turbulent waves ook i

merge to form large domains. This suggests that the spatial
correlation of the system is larger than the case when the
noise is absent. This is convinced clearly by the correlation
function depicted in Fig. Zopen squargs An exponential FIG. 2. Normalized correlation functioBs against space for

line best fits the simulatiosolid curve. The decay rate is, the noise-fredcircle) and noise-affected systefaquar¢. The cor-
however, much slower. The correlation length was fitted tarelation length was fitted exponentially to be about 5.25 and 10.92,
be 10.92, about twice as much as in the noise-free systemspectively. Parameters are the same as in Fig. 1.
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FIG. 3. Spatial correlation lengthas a function of\, showing
that at the optimal valua =21 the system achieves its maximal
correlation lengthl =11.57. Other parameters are the same as in
Fig. 1.

In order to obtain a more complete picture of the corre-
spondence between the correlation length of noise and re-
sponse of the system, we fixed=1.0 and scanned the pa-
rameter\ in Eq. (2) from 1.0 to 55.0. Figure 3 demonstrated
the correlation lengths of patterns against parameteédne
observed that the spatial correlation of the system does not
always go up monotonically with the increase of correlation
length of noise. A larger value of does not necessarily
induce a longer correlation length. There exists an optimal
value of\ (21.0 where the spatial correlation of the system
achieves its maximunil1.57. This phenomenon is interest-
ing and counterintuitive, indicating a complex interplay be-
tween the noise and deterministic chaos.

The parameter that controls the temporal correlation of
the noise has also significant influence on the spatial corre-
lation of the system. We find that noises with longer time o _ _ )
memory produce patterns with a shorter correlation length FIG. 5. Patterns with different intensity of_ n0|s_es.:0._01 fqr
We have fixed\=16.0 and scanned from 1.0 to 40.0. (a), ande=0.1 for (b). Other parameters are identical with Fig. 1
Figure 4 summarizes the simulation results. It is clear thaf*cePt for\=40.

correlation length of the system decreases monotonicall}/ixe d noise intensity £=0.001). When the noise is more

with the increase of noise memory. Noises with short corre- tensive. the infl th tial lation is found t
lation time can drastically enhance the spatial correlation. ﬂg‘ enswﬁ, e urt]ence 3” Fi € spaslg cgrtre a 'Or? IS foun (I)
platform is reached as grows up. Notice that the height of € much more enhanced. Figure 5 depicts such an example.

the platform is about the value of the correlation length ofThe portrait in Fig. %) is a snapshot of the real part of the

. : L lex amplitude after the noise has been turned on, with
the noise-free spatiotemporal chaos, which is about 5.25:0P o . - . ’
This suggests that the noise of a specific intensity with 422rametee=0.01,A=40.0, andr=1.0. Figure $b) shows

large enough temporal memory no long affects much thf;Ilhe pattern with a much more in_tensi_ve noise 0.1. !t. is
spatial correlation of the system. remarkable that the clusters in Figbbis much magnified,

In the above calculations, the results were obtained with gwdicating a much longer spatial correlation length than that

of Fig. 5a).
12 — : . . . We also checked the influence of noise on temporal cor-
L ] relation of the dynamics dictated by E@). For simplicity,
10k J the temporal correlation function was defined at a single

point in the real field as follows:

b ] Ct(t)=f Re(A(t))Re(A(t' +1))dt’. (6)

s The correlation functions shown in Fig. 6 were calculated at
an arbitrarily chosen point on the lattic&C,( at different
points in the field were found to differ trivially One can see
FIG. 4. The correlation length of the noise-affected system as #hat the functions are no longer simple exponential decays,
function of r whene=0.001,\=16.0. but curves of complicated oscillations. Figure 6 showed two
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FIG. 6. Damping temporal correlation functia, when the FIG. 7. Fourier transforms of tw6, functions in Fig. 6, i.e., the

system is free of noisésolid line), and noise affected withr solid and dashed curves, showing a small frequency shift.

=10.0 (dashed ling and 7= 100.0 (dotted ling. Other parameters ) . o .
are the same as in Fig. 1. noise enters the dynamics multiplicatively are also interest-

ing, and potential complex behaviors are possible. In our
simulations, we have been only involved in the property of
- . ; correlation function of the system. Manifestations of noise
line). The solid curve denotes the noise-fi@g. The effect o, other characteristics of spatiotemporal chaos, such as
of the noises on the oscillation frequency@(t) is obvious. | yapunov exponents and dimensions, have not been consid-
As demonstrated in Fig. 7, Fourier transform of the temporakyeq. Results presented here provided a first step to explore
correlation functions clearly shows a small shift in the fre-q possibilities of complex dynamics coming out from the
quency. . o interaction between chaos and noise. Further investigation
We noticed that the amplitude of the oscillation, in both along this line is desirable.
noise-free_and noise-affected situations, is not always compared with the effects of noise on low-dimensional
damped. The behavior is complicated due to the chaotic Ngnaog[2,31], the action of structured noise on spatially ex-
ture of the whole dynamics. It decays fast only at the earliesfanged chaos is more significant. In the case of simple chaos,
stage. At later time, it typically grows up and then falls oncechaotic attractor is robust, and noises have been found to
in a while in an irregular manner. _ ~_ have no drastic influence on the strange attractor. It only
~ In summary, the interplay between two essentially distinclsmeared its fine structures and made it a little fuzzy. Changes
irregularities, i.e., spatiotemporal colored noises and spap characteristics of the chaotic dynamics have not been pre-
tially extended chaos in the complex Ginzburg-Landau equagicted in both simulations or observed in experiments. Our
tion, has been simulated numerically. We calculated the spgugts presented here showed, however, that the impact of
tial and temporal correlation of the noise-affected system agg|ored noise on spatially extended chaos is profound.
functions of the noise, and revealed a complex interaction

between chaos and noise. It should be pointed out that the We appreciate the support of this work by the Special
noise we considered is simply additive. Situations where théunds for Major State Basic Research Projects of China.

cases with noise=10.0(dashed lingand 7=100.0(dotted
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