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Effect of colored noises on spatiotemporal chaos in the complex Ginzburg-Landau equation
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The effect of colored noises, which are correlated both in space and time, on spatiotemporal chaos in the
complex Ginzburg-Landau equation has been studied numerically. The correlations of spatiotemporal patterns
as a function of characteristics of noise were calculated. We found that there exists an optimal correlation
length of noise where the system establishes its maximal spatial correlation; a small temporal correlation of
noise corresponds to a larger correlation length in the system; and that an increase of noise intensity enhances
the spatial correlation of the spatiotemporal patterns. Besides, the frequency of temporal correlation function,
which is a complicated oscillation, also depends on properties of the noise.
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The nontrivial role played by noise in dynamic system
has been recognized for over two decades@1,2#. Due to its
theoretical importance and potential practical application
has attracted great interest of theoretical and experime
researches. Earlier investigations along this line were ma
concentrated on low-dimensional systems with purely te
poral dependence. Important effects have been discovere
was found that noise can change the instability of determ
istic states, and induce new states that are completely ab
in the noise-free systems. As a usual source of disorde
can counterintuitively produce order. Under appropriate
cumstances, the usual nuisance can become a boon a
been seen in the well-known case of stochastic resonance@3#.

As the influence of noises on low-dimensional dynam
systems has been studied extensively@1#, much research in-
terest has nowadays shifted to spatially extended syst
@4,5#, a situation that is apparently much more complicat
In this case, the noise can correlate in both space and
@6#, and the influence is even more profound. Import
manifestations include noise-induced fronts@7# and spatial
patterns @8,9#, noise-induced phase transitions~including
noise-induced ordering transitions and noise-induced di
dering transitions! @10–14#, noise-induced phase separati
@15#, spatiotemporal stochastic resonance@16–20#, and vari-
ous noise-sustained phenomena@21–28#. In the spatially ex-
tended situations, the way in which the noise takes effec
not obvious, and the deterministic description usually can
give the right results. It is assumed that the noise-indu
phenomena have come about as a consequence of non
interaction between the noise and the deterministic dyn
ics.

In this paper, we are concerned with the interplay betw
colored noises and spatiotemporal chaos in the com
Ginzburg-Landau equation. It is well known that noise a
chaos represent, respectively, two kinds of essentially dif
ent irregularities. The former is induced by genuine stoch
tic sources, while the randomness of the latter is pseudo
is deterministic in its origin. The noises we consider are c
ored, i.e., correlated both spatially and temporally. The s
tiotemporal chaos is intrinsically irregular in both space a
time, and represents a prototype of deterministic rando
ness. It is interesting to see what would come about a
result of the interaction between these two irregularities t
are essentially distinct.
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We fix the deterministic dynamics of complex Ginzbur
Landau equation in the regime of chaos, and change
property of colored noise. The response of the system to
noise is then simulated. Spatial and temporal correlat
functions are used to characterize the system. We show
the noise significantly affects the correlation properties of
system. The spatial correlation length and oscillation f
quency of the temporal correlation function depend rema
ably on the character of noise. We find that there exists
optimal correlation length of the noise where the syst
achieves its maximum spatial correlation. The correlat
time and the intensity of the noise are also found to ha
significant influence.

The complex Ginzburg-Landau equation~CGLE! is an
important model for spatially extended chaos. It is simp
experimentally relevant, universal@29#, and has been a ge
neric amplitude equation widely used in the study of patt
formation. We consider the CGLE of the form

]A

]t
5A1~11 ic1!¹2A2~12 ic3!uAu2A, ~1!

where amplitudeA is complex, andc1 ,c3 are real positive
numbers. The equation supports fruitful spatiotemporal p
nomena, and chaos appears as one of its fundamental
tions. A basic source of chaos in the CGLE is the Benjam
Feir instability, which is an interplay between spatial a
temporal dispersion. For our purpose, we fixc1 and c3 be-
yond the Benjamin-Feir curve (c1c351) to ensure a chaotic
dynamics. The colored noise we considered has been ge
ated from the following stochastic partial differential equ
tion @30#:

]h~r ,t !

]t
52

1

t
~12l2¹2!h1

1

t
j~r ,t !. ~2!

j(r ,t) is a Gaussian distributed white noise that has prope

^j~r ,t !j~r 8,t8!&52«d~ t2t8!d~r 2r 8!, ~3!

where« is the intensity of the noise.l in Eq. ~2! measures
the correlation length ofh(r ,t), and the temporal memory o
the stochastic process is controlled byt. The spatial correla-
tion of orderl is ensured by the Laplacian term that coup
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the stochastic field at different points. Obviously, Eq.~3! is a
generalization of the evolution equation for Ornste
Uhlenbeck process. The noises determined by Eq.~2! are
exponentially correlated both in space and time. The no
generated in this way represents a simple spatiotemp
structured noise that can be used to mimic real situatio
Equation~2! is a linear stochastic partial differential equ
tion. By applying the algorithm developed in Ref.@30#, we
simulate exactly the noise in Fourier space and perform
reverse-Fourier transform back to the real space. In this
we obtain the final noise we need. The colored noise g
erned by Eq.~2! has been introduced additively into Eq.~1!,
and we concentrate our attention on the noise-affected CG
of the following form:

]A

]t
5A1~11 ic1!¹2A2~12 ic3!uAu2A1~11 i !h~r ,t !.

~4!

In order to examine the influence of added noise and
interaction with the spatiotemporal chaos, Eq.~4! is inte-
grated numerically. We discreted Eq.~4! on a 5123512
square lattice with a zero-flux boundary condition and in
grated it numerically by Euler algorithm. In all our calcul
tions, the parameterc1 ,c3 was fixed to be 0.9 and 1.25
respectively. The dynamics of the noise-free CGLE is th
located in the chaotic regime.

A snapshot of the spatiotemporal chaos is depicted in
1~a!, which is a gray-scaled picture of the real part of t
complex amplitude. In order to characterize the system,
introduce the following spatial correlation function:

Cs~r !5 K E Re„A~r 8!…Re„A~r 81r !…dr8L . ~5!

It is defined in the field of the real part of the amplitude a
measures the spatial correlation property of points apart f
distancer. The averagê& is performed over the time. Th
integration is carried out numerically over the lattice in
long period of time so that the observed patterns
asymptotic. Figure 2~open circles! shows theCs for the
noise-free pattern in Fig. 1~a!. It is roughly an exponentia
decay. The solid line over the circles is a least-square fi
exponential functione2r / l . The distance whereCs(r ) decays
to its e21 thus measures the correlation lengthl, which is
5.25 for the present case.

The behavior of the system undergoes a drastic cha
when the noise is turned on. Figure 1~b! shows a typical
snapshot of the real part of the amplitude after transient p
cess has died out. Large clusters can be recognized in
demonstration. The details of the spatiotemporal chaos@Fig.
1~a!# are smeared out by noises, and small turbulent wa
merge to form large domains. This suggests that the sp
correlation of the system is larger than the case when
noise is absent. This is convinced clearly by the correlat
function depicted in Fig. 2~open squares!. An exponential
line best fits the simulation~solid curve!. The decay rate is
however, much slower. The correlation length was fitted
be 10.92, about twice as much as in the noise-free sys
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~5.25!. At this point, the colored noise has a correlati
length of 5.06 (l516). It is interesting that the interpla
between the noise and extended chaos with short spatial
relations was able to establish a much longer spatial corr
tion within the system. The typical pattern shown in Fig. 1~b!
is not static. It evolves continuously with time.

FIG. 1. Snapshot of spatiotemporal chaos~a! before and after
the noise is turned on~b!. Parameters:c150.9, c351.25; t51.0,
l516.0, «50.001.

FIG. 2. Normalized correlation functionCs against spacer for
the noise-free~circle! and noise-affected system~square!. The cor-
relation length was fitted exponentially to be about 5.25 and 10
respectively. Parameters are the same as in Fig. 1.
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In order to obtain a more complete picture of the cor
spondence between the correlation length of noise and
sponse of the system, we fixedt51.0 and scanned the pa
rameterl in Eq. ~2! from 1.0 to 55.0. Figure 3 demonstrate
the correlation lengths of patterns against parameterl. One
observed that the spatial correlation of the system does
always go up monotonically with the increase of correlat
length of noise. A larger value ofl does not necessaril
induce a longer correlation length. There exists an optim
value ofl ~21.0! where the spatial correlation of the syste
achieves its maximum~11.57!. This phenomenon is interes
ing and counterintuitive, indicating a complex interplay b
tween the noise and deterministic chaos.

The parametert that controls the temporal correlation o
the noise has also significant influence on the spatial co
lation of the system. We find that noises with longer tim
memory produce patterns with a shorter correlation leng
We have fixedl516.0 and scannedt from 1.0 to 40.0.
Figure 4 summarizes the simulation results. It is clear t
correlation length of the system decreases monotonic
with the increase of noise memory. Noises with short cor
lation time can drastically enhance the spatial correlation
platform is reached ast grows up. Notice that the height o
the platform is about the value of the correlation length
the noise-free spatiotemporal chaos, which is about 5
This suggests that the noise of a specific intensity wit
large enough temporal memory no long affects much
spatial correlation of the system.

In the above calculations, the results were obtained wi

FIG. 3. Spatial correlation lengthl as a function ofl, showing
that at the optimal valuel521 the system achieves its maxim
correlation lengthl 511.57. Other parameters are the same as
Fig. 1.

FIG. 4. The correlation length of the noise-affected system a
function of t when«50.001,l516.0.
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fixed noise intensity («50.001). When the noise is mor
intensive, the influence on the spatial correlation is found
be much more enhanced. Figure 5 depicts such an exam
The portrait in Fig. 5~a! is a snapshot of the real part of th
complex amplitude after the noise has been turned on, w
parameter«50.01, l540.0, andt51.0. Figure 5~b! shows
the pattern with a much more intensive noise«50.1. It is
remarkable that the clusters in Fig. 5~b! is much magnified,
indicating a much longer spatial correlation length than t
of Fig. 5~a!.

We also checked the influence of noise on temporal c
relation of the dynamics dictated by Eq.~4!. For simplicity,
the temporal correlation function was defined at a sin
point in the real field as follows:

Ct~ t !5E Re„A~ t !…Re„A~ t81t !…dt8. ~6!

The correlation functions shown in Fig. 6 were calculated
an arbitrarily chosen point on the lattice (Ct at different
points in the field were found to differ trivially!. One can see
that the functions are no longer simple exponential deca
but curves of complicated oscillations. Figure 6 showed t

n

a

FIG. 5. Patterns with different intensity of noises:«50.01 for
~a!, and«50.1 for ~b!. Other parameters are identical with Fig.
except forl540.
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cases with noiset510.0 ~dashed line! andt5100.0~dotted
line!. The solid curve denotes the noise-freeCt . The effect
of the noises on the oscillation frequency ofCt(t) is obvious.
As demonstrated in Fig. 7, Fourier transform of the tempo
correlation functions clearly shows a small shift in the fr
quency.

We noticed that the amplitude of the oscillation, in bo
noise-free and noise-affected situations, is not alw
damped. The behavior is complicated due to the chaotic
ture of the whole dynamics. It decays fast only at the earl
stage. At later time, it typically grows up and then falls on
in a while in an irregular manner.

In summary, the interplay between two essentially disti
irregularities, i.e., spatiotemporal colored noises and s
tially extended chaos in the complex Ginzburg-Landau eq
tion, has been simulated numerically. We calculated the s
tial and temporal correlation of the noise-affected system
functions of the noise, and revealed a complex interac
between chaos and noise. It should be pointed out that
noise we considered is simply additive. Situations where

FIG. 6. Damping temporal correlation functionCt when the
system is free of noise~solid line!, and noise affected witht
510.0 ~dashed line! and t5100.0 ~dotted line!. Other parameters
are the same as in Fig. 1.
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noise enters the dynamics multiplicatively are also intere
ing, and potential complex behaviors are possible. In
simulations, we have been only involved in the property
correlation function of the system. Manifestations of no
on other characteristics of spatiotemporal chaos, such
Lyapunov exponents and dimensions, have not been con
ered. Results presented here provided a first step to exp
the possibilities of complex dynamics coming out from t
interaction between chaos and noise. Further investiga
along this line is desirable.

Compared with the effects of noise on low-dimension
chaos@2,31#, the action of structured noise on spatially e
tended chaos is more significant. In the case of simple ch
chaotic attractor is robust, and noises have been foun
have no drastic influence on the strange attractor. It o
smeared its fine structures and made it a little fuzzy. Chan
in characteristics of the chaotic dynamics have not been
dicted in both simulations or observed in experiments. O
results presented here showed, however, that the impa
colored noise on spatially extended chaos is profound.

We appreciate the support of this work by the Spec
Funds for Major State Basic Research Projects of China

FIG. 7. Fourier transforms of twoCt functions in Fig. 6, i.e., the
solid and dashed curves, showing a small frequency shift.
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